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Abstract—The implantable closed-loop system for epileptic seizure detection
and neuromodulation is getting more attention in recent years. The architecture
design for seizure signal sensing and analyzing has been proposed, but the im-
plementation of the classifier for unsupervised seizure detection is still strongly
desired. The k-nearest neighbor (KNN) classification algorithm is one commonly
used classifiers in previous researches, yet it needs the training data from both
non-seizure and seizure EEG/ECoG states, which are difficult to be collected.
Also, the large size of the training set and the concept of the exhaustive search
for nearest neighbors make the classification procedure power-consuming. In
this paper, we propose a sub-microwatt KNN classifier which only requires the
non-seizure EEG/ECoG for training. The size of the training set memory as well
as the leakage power is saved by 50%. The processing dynamic power is further
reduced by 93.9% due to the early termination scheme. This work achieves the
sensitivity of 98.04% and the false alarm rate of 1.97% with optimized power
consumption at sub-microwatt, and is suitable for the implantable devices.

1 INTRODUCTION

In the last decade, an emerging therapy for the epilepsy control
is the neuromodulation, or the electrical stimulation of the
brain [1], [2]. By sending stimulating current to break down
the epileptic neural firing, this treatment has been proven to
be effective for interrupting the onset of upcoming seizures.
However, traditional open-loop system performs continuous
stimulation without analyzing the states of the brain, and many
studies suggest that the efficacy of the treatment could be
further enhanced by making it a closed-loop system featuring
brain state feedback mechanism [3]. Thanks to the aid of
electroencephalogram (EEG) and electrocorticogram (ECoG),
more insights about the dynamics of the epileptic brain are
discovered, and the rapid development of the seizure detec-
tion and prediction techniques [4], [5] make the closed-loop
neuromodulation system feasible.

A general closed-loop system for automated seizure detec-
tion and neuromodulation consists of the EEG/ECoG sensing
unit, the signal characteristics analyzing/decision unit and
the neurostimulator. Current development on the system is
toward an implantable miniaturized device. For such power-
limited application, low-power design for each component in
the system becomes the most important issue. In previous
researches, several prototype implementations are presented.
A spectral analysis IC was proposed by Avestruz and et al.
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for neuronal biomarkers sensing and analyzing [6], and the
power consumption achieves 5µW per channel. Aziz and et
al. realized an microsystem featuring the wavelet transform
processor for epileptic brain dynamics characterization [3],
and the system consumes power at microwatt order. However,
none of these works have realized the automated decision unit,
i.e. the classifier, for the system. The classifier is an essential
component responsible for classifying the epileptic biomarkers
or features. Therefore, the implementation of the classifier for
the implantable system is highly desired.

Several different approaches are applied to construct the
classifier for epileptic seizure detection. The artificial neural
networks (ANNs) are commonly adopted [3], [7], but the ANN
can hardly be implemented into low-power hardware for its
high complexity. The k-nearest neighbor (KNN) classifier is
an alternative choice having good performance for epileptic
seizure detection [8] with low computational complexity. Nev-
ertheless, the direct implementation of the KNN algorithm
cannot meet the low-power requirement of the system. The
large size of the training set memory and the exhaustive
searching for nearest neighbors make the classifier power-
consuming. On the other hand, the training of the KNN
classifier requires the seizure EEG/ECoG data, but the sudden
onset of seizures makes it difficult to be acquired. For these
reasons, more efficient and low-power design is required for
the KNN classifier.

In this paper, we propose the hardware architecture for
an on-chip KNN classifier. The modified version of KNN
classifier only requires non-seizure EEG data at the training
stage. Moreover, several low-power techniques are applied
and substantially reduce the power consumption to the sub-
microwatt order. The remainder of this paper is organized as
follows. In section 2, we introduce the closed-loop neuromod-
ulation system. The algorithm of the proposed KNN classifier
is explained in section 3, and the architecture design method-
ology is revealed in section 4. In section 5, the simulation
and implementation results are presented. Finally, we draw
conclusion in section 6.

2 THE CLOSED-LOOP NEUROMODULATION SYS-
TEM

The closed-loop neuromodulation system is an implantable
miniaturized device that could detect and break down the
epileptic seizures. Limited power supply of this device implies
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Fig. 1. The detailed block diagram of a epileptic neuromodula-
tion system.

that low-power design is very important to the system. Several
techniques are usually adopted to achieve this goal. For
example, the ASIC implementation is preferred to the design
with general purpose microprocessors because of the reduced
overhead. Also, advanced process could benefit the power
dissipation performance. More important, the hardware area
and computational cost would directly affect the leakage and
dynamic power, respectively. Therefore, in the system design,
these factors should be considered.

2.1 System Architecture

Fig. 1 illustrates the detailed block diagram of a neuromodula-
tion system. With total M channels of EEG/ECoG processing
capability, the system consists of three major components: 1)
the front-end analog circuit for EEG/ECoG recording, 2) the
digital signal processing unit (DSPU) and 3) the multi-channel
neurostimulator. The EEG/ECoG captured by the electrodes
are first amplified, digitized and time-multiplexed by the
recording circuit. Then, the DSPU are responsible for the early
detection of seizures. If there are upcoming seizures, the N-
channel neurostimulator would be actuated, and stimulating
current is sent to break down the seizures.

The DSPU contains several different modules. First, the
programmable FIR filters remove the noise and reserve the
signal in a specific bandwidth. Next, some features are ex-
tracted from the preprocessed signal. In the implementation,
we apply a multi-feature scheme. The curve length (CL) and
non-linear energy are features from time domain analysis [7].
The mean phase coherence [9] and the rhythmic discharge
(RD) [10] are features from spatial domain and frequency
domain analysis, respectively. The correlation integral (CI)
is from the non-linear analysis [11] to estimate the brain
chaoticity. Employing several features from different analyzing
way not only enhances the seizure detection accuracy, but also
envisions a possibility of discovering more properties about
the epileptic brain dynamics in the future. After the feature
extraction, a subset of the biomarkers from M channels are
selected to preserve useful information and to reduce the total
quantity of data. Finally, the KNN classifier decides the states
of the incoming features by comparing with the training set.

2.2 System Specification

Our design targets at the system with 16 channels processing
capability, i.e. M = 16. The sampling rate of the EEG/ECoG
from each channel is 256Hz with input bit precision of 9 bits,

and the system clock rate would be 4096Hz by multiplexing
signals from 16 channels. To achieve real time response for
more accurate detection of seizures, the detecting rate is set
to be 10 times/sec.

3 k-NEAREST NEIGHBOR ALGORITHM

The k-nearest neighbor (KNN) algorithm is a lazy learning
classification algorithm. An object or sample is classified to
one class by a majority vote of its k-nearest neighbors from
the training set. Fig. 2(a) is an example of the original KNN
classification. On the 2D feature space, the red triangles and
the blue circles are data from non-seizure and seizure class
collected in the training stage, respectively. In the processing
stage, the incoming unknown object, the green cross, is to be
classified. The KNN algorithm finds k-nearest neighbors of the
cross from the training set. Then, if more than half of these
neighbors are from the seizure class, the cross is classified as
epileptic seizure, and vice versa. The cross in Fig. 2(a) would
be assigned to the seizure class if k = 3.

However, if high accuracy of the classification results is
required, a large memory space is needed to store enough
training set data from both classes, which would increase the
hardware area and is not very power-effective. Furthermore,
larger training set implies higher computational power con-
sumption for searching nearest neighbors. Also, because of
the sudden onset of the seizure state, the seizure training set
is hard to obtain.

To improve the original algorithm, we propose the modified
KNN classifier for the implantable epileptic neuromodulation
system. As shown in Fig. 2(b), only non-seizure EEG/ECoG
data, the red triangles, are collected in the training stage,
and we preset a distance threshold D and the parameter
k. In the processing stage, we compare the distance of the
incoming object, the green cross, with all of the non-seizure
data in the training set. If more than k non-seizure data whose
distance to the incoming object is less than D, then the state
of the incoming object would be assigned to non-seizure.
Otherwise, the incoming object would be identified as seizure.
The proposed algorithm do not need to collect the seizure
training data, and both the memory size and the processing
time could be reduced by half because of the comparison with
only the non-seizure training data.

4 ARCHITECTURE DESIGN

Based on the proposed algorithm, Fig. 3 illustrates the hard-
ware architecture of the proposed KNN classifier, and the
operation of the finite state machine (FSM) is revealed in
Fig. 4(a). In the training stage, the non-seizure features from
the previous stage are directly stored into the training set
memory until the memory is full. In the processing stage,
the incoming unclassified features are temporarily saved into
the FIFO data buffer for further operation. The distance
comparator first computes the distance between the data in
the data buffer and all the the data in the training set memory,
and then compares the result with the distance threshold D. If
the computed distance is smaller than D, the match number
would be accumulated by the match accumulator. Finally, a
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Fig. 2. The comparison between (a) the original KNN classifier
and (b) the modified KNN classifier on a 2D feature space. The
red triangles are training set from the non-seizure class, the blue
circles are training set from the seizure class, and the green
cross is the incoming unknown object.

Fig. 3. The hardware architecture of the proposed KNN classi-
fier.

subtractor is used to compare the match number with k to
give the classification result.

Because the proposed algorithm only requires the training
data from the non-seizure EEG/ECoG, the size of the training
set memory and the computational complexity of on-line
matching could both be reduced by 50%. The reduced memory
size not only lower the hardware implementation cost, but
also reduce the power consumption. The cell leakage power of
the hardware is directly proportional to its area. The reduced
memory contributes to the reduction on the leakage power. The
saving in the computational complexity provides the reduction
on the dynamic power.

The proposed algorithm requires that the data to be clas-
sified should be compared with all of the training data in
the training set memory, then the output could signal ready.
However, this approach is power-wasting in that the match
number might already much larger than k. Therefore, We
further modify the operation of the FSM, and it is presented
in Fig. 4(b). The new FSM possesses the early termination
scheme that the operation terminated when the match number
is larger than k instead of waiting until the end of the
exhaustive distance comparison. The modified FSM could
significantly shorten the processing time when the brain state is
non-seizure, which is most of the case, and the dynamic power
consumed at the processing stage is thus further reduced.

5 SIMULATION AND IMPLEMENTATION RESULTS

5.1 Simulation Results

The proposed KNN classifier is tested with the system
presented in section 2 for the ability of seizure de-
tection. The data applied are real ECoG recorded from

(a) FSM without the early termination scheme

(b) FSM with the early termination scheme

Fig. 4. The FSM operation of the proposed KNN classifier.

the Epilepsy Center at the University of Bonn, Ger-
many. The data are made available online by Dr. R.
Andrzejak (http://www.meb.unibonn.de/epileptologie/science
/physik/eegdata.html). We used data from three groups and
divided them into two classes: the non-seizure class (group Z
and group N) and the seizure class (group S).

For ease of demonstration, we show the 3D feature space
consisting of normalized RD, CL and CI in Fig. 5. The blue
circle are from the non-seizure class and the red triangles
are from the seizure class. Two clusters could be clearly
identified in this plot, and the data from the non-seizure class
are more densely located with each other while the data from
the seizure class are more scattered. This property implies that
the distances of nearby non-seizure features are more likely
to be bounded by a threshold, which makes the application of
the proposed KNN algorithm more convincible and practical.

To examine the seizure detection capability, we apply the
following figure of merit: the sensitivity, i.e. the true positive
rate, and the false alarm rate, i.e. the false positive rate. To
find the distance threshold for optimized system performance,
Fig. 6 shows the receiver operating characteristic (ROC) curves
of the proposed KNN classifier when k equals to 3, 7 and 11
as its distance threshold D is varied. Each of these curves
passes through the upper left corner of the ROC space, which
means that the proposed KNN classifier is effective. For the
choice of k, we note that larger values of k generally reduce
the effect of noise, but it also increases the processing latency.
In our simulation, we tried to decrease the value of k while still
maintaining the classification performance. The ROC curves in
Fig. 6 reveal that the proposed KNN classification performance
is almost unchanged with different k values. Therefore, the k
value of 3 is suggested in the case of the applied data.

Table 1 shows the performance comparison between the
original and the proposed KNN classifiers with the early
termination scheme. Both of the classifiers could achieve the
sensitivity around 98% and the false alarm rate less than 2%.
However, the proposed algorithm requires less implementation
cost and computational complexity, which effectively reduces
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Fig. 5. The 3D feature space consisting of normalized RD, CL
and CI. The blue circles are from the non-seizure class and the
red triangles are from the seizure class.

Fig. 6. The ROC curve of the proposed high-efficiency KNN
classifier for k = 3, 7 and 11.

the leakage and dynamic power dissipation.
The reduction of the computational complexity as well as

the dynamic power brought by the proposed KNN algorithm
is revealed in Fig. 7. In the simulation, 30 non-seizure and 30
seizure training set are applied. When the training with only
the non-seizure data is adopted, the computational complexity
at both the seizure and non-seizure state could be reduced by
50%. If the early termination scheme is added, the complexity
at the non-seizure state could be further saved by 87.9%.
Compared with the original KNN algorithm, the total reduction
of the computational cost at the seizure state is 93.9%. Also,
the patients would stay in the non-seizure state in most of the
time. Therefore, the dynamic power consumption of the KNN
classifier is approximately saved by 93.9%.

5.2 Implementation Results

We use the 90nm low-K CMOS process to implement the
proposed KNN algorithm, and Table 2 presents the synthesis
result. The training set memory size of 7680 bits and the
system clock rate of 4096Hz are set, and the core area is about
0.031mm2. Different from conventional chip implementation,
the cell leakage power is about 57.4 times higher than the
dynamic power due to the low clock rate. As we know, the cell
leakage power is proportional to the chip size, which implies
that the area becomes a more critical issue in this design.

TABLE 1
Performance comparison of the KNN classifiers

Feature Sensitivity (%) False alarm rate (%)
Original KNN 98.7429 1.5529
Proposed KNN 98.0400 1.9714

Fig. 7. The comparison of the average distance computation
times required by different KNN algorithms.

Moreover, the memory occupies about two third of the total
core area. Under such condition, the proposed KNN classifier
has the advantage that the required memory size is only 50%
of the size required by the original KNN classifier.

6 CONCLUSION

In this paper, the algorithm and hardware architecture design
of a sub-microwatt KNN classifier for the implantable closed-
loop system are presented. The training of the proposed algo-
rithm only requires the non-seizure EEG/ECoG data instead
of both non-seizure and seizure signals. The performance
of this work achieves the sensitivity of 98.04% and the
false alarm rate of 1.97%, which is as well as the original
method. For the hardware implementation, the proposed KNN
classifier only demands half size of the training set memory,
which reduces 50% leakage power dissipation. Furthermore,
the average computational complexity as well as the dynamic
power consumption is reduced by 93.9% due to the reduced
training set memory size and the early termination scheme.
The synthesis result shows that the core area is 0.031mm2,
and the dynamic power and cell leakage power are 6.77nW
and 388.89nW, respectively.
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